FD.io VPP  v17.07.01-10-g3be13f0
Vector Packet Processing
ip4_mtrie.c
Go to the documentation of this file.
1 /*
2  * Copyright (c) 2015 Cisco and/or its affiliates.
3  * Licensed under the Apache License, Version 2.0 (the "License");
4  * you may not use this file except in compliance with the License.
5  * You may obtain a copy of the License at:
6  *
7  * http://www.apache.org/licenses/LICENSE-2.0
8  *
9  * Unless required by applicable law or agreed to in writing, software
10  * distributed under the License is distributed on an "AS IS" BASIS,
11  * WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
12  * See the License for the specific language governing permissions and
13  * limitations under the License.
14  */
15 /*
16  * ip/ip4_fib.h: ip4 mtrie fib
17  *
18  * Copyright (c) 2012 Eliot Dresselhaus
19  *
20  * Permission is hereby granted, free of charge, to any person obtaining
21  * a copy of this software and associated documentation files (the
22  * "Software"), to deal in the Software without restriction, including
23  * without limitation the rights to use, copy, modify, merge, publish,
24  * distribute, sublicense, and/or sell copies of the Software, and to
25  * permit persons to whom the Software is furnished to do so, subject to
26  * the following conditions:
27  *
28  * The above copyright notice and this permission notice shall be
29  * included in all copies or substantial portions of the Software.
30  *
31  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND,
32  * EXPRESS OR IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF
33  * MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND
34  * NONINFRINGEMENT. IN NO EVENT SHALL THE AUTHORS OR COPYRIGHT HOLDERS BE
35  * LIABLE FOR ANY CLAIM, DAMAGES OR OTHER LIABILITY, WHETHER IN AN ACTION
36  * OF CONTRACT, TORT OR OTHERWISE, ARISING FROM, OUT OF OR IN CONNECTION
37  * WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE SOFTWARE.
38  */
39 
40 #include <vnet/ip/ip.h>
41 #include <vnet/ip/ip4_mtrie.h>
42 #include <vnet/fib/ip4_fib.h>
43 
44 
45 /**
46  * Global pool of IPv4 8bit PLYs
47  */
49 
52 {
53  /*
54  * It's 'non-empty' if the length of the leaf stored is greater than the
55  * length of a leaf in the covering ply. i.e. the leaf is more specific
56  * than it's would be cover in the covering ply
57  */
59  return (1);
60  return (0);
61 }
62 
65 {
67  l = 1 + 2 * adj_index;
68  ASSERT (ip4_fib_mtrie_leaf_get_adj_index (l) == adj_index);
69  return l;
70 }
71 
74 {
75  return (n & 1) == 0;
76 }
77 
80 {
82  return n >> 1;
83 }
84 
87 {
89  l = 0 + 2 * i;
91  return l;
92 }
93 
94 #ifndef __ALTIVEC__
95 #define PLY_X4_SPLAT_INIT(init_x4, init) \
96  init_x4 = u32x4_splat (init);
97 #else
98 #define PLY_X4_SPLAT_INIT(init_x4, init) \
99 { \
100  u32x4_union_t y; \
101  y.as_u32[0] = init; \
102  y.as_u32[1] = init; \
103  y.as_u32[2] = init; \
104  y.as_u32[3] = init; \
105  init_x4 = y.as_u32x4; \
106 }
107 #endif
108 
109 #ifdef CLIB_HAVE_VEC128
110 #define PLY_INIT_LEAVES(p) \
111 { \
112  u32x4 *l, init_x4; \
113  \
114  PLY_X4_SPLAT_INIT(init_x4, init); \
115  for (l = p->leaves_as_u32x4; \
116  l < p->leaves_as_u32x4 + ARRAY_LEN (p->leaves_as_u32x4); \
117  l += 4) \
118  { \
119  l[0] = init_x4; \
120  l[1] = init_x4; \
121  l[2] = init_x4; \
122  l[3] = init_x4; \
123  } \
124 }
125 #else
126 #define PLY_INIT_LEAVES(p) \
127 { \
128  u32 *l; \
129  \
130  for (l = p->leaves; l < p->leaves + ARRAY_LEN (p->leaves); l += 4) \
131  { \
132  l[0] = init; \
133  l[1] = init; \
134  l[2] = init; \
135  l[3] = init; \
136  } \
137 }
138 #endif
139 
140 #define PLY_INIT(p, init, prefix_len, ply_base_len) \
141 { \
142  /* \
143  * A leaf is 'empty' if it represents a leaf from the covering PLY \
144  * i.e. if the prefix length of the leaf is less than or equal to \
145  * the prefix length of the PLY \
146  */ \
147  p->n_non_empty_leafs = (prefix_len > ply_base_len ? \
148  ARRAY_LEN (p->leaves) : 0); \
149  memset (p->dst_address_bits_of_leaves, prefix_len, \
150  sizeof (p->dst_address_bits_of_leaves)); \
151  p->dst_address_bits_base = ply_base_len; \
152  \
153  /* Initialize leaves. */ \
154  PLY_INIT_LEAVES(p); \
155 }
156 
157 static void
159  ip4_fib_mtrie_leaf_t init, uword prefix_len, u32 ply_base_len)
160 {
161  PLY_INIT (p, init, prefix_len, ply_base_len);
162 }
163 
164 static void
166  ip4_fib_mtrie_leaf_t init, uword prefix_len)
167 {
168  memset (p->dst_address_bits_of_leaves, prefix_len,
169  sizeof (p->dst_address_bits_of_leaves));
170  PLY_INIT_LEAVES (p);
171 }
172 
175  ip4_fib_mtrie_leaf_t init_leaf,
176  u32 leaf_prefix_len, u32 ply_base_len)
177 {
179 
180  /* Get cache aligned ply. */
181  pool_get_aligned (ip4_ply_pool, p, CLIB_CACHE_LINE_BYTES);
182 
183  ply_8_init (p, init_leaf, leaf_prefix_len, ply_base_len);
184  return ip4_fib_mtrie_leaf_set_next_ply_index (p - ip4_ply_pool);
185 }
186 
189 {
191 
192  return pool_elt_at_index (ip4_ply_pool, n);
193 }
194 
195 void
197 {
198  /* the root ply is embedded so the is nothing to do,
199  * the assumption being that the IP4 FIB table has emptied the trie
200  * before deletion.
201  */
202 #if CLIB_DEBUG > 0
203  int i;
204  for (i = 0; i < ARRAY_LEN (m->root_ply.leaves); i++)
205  {
207  }
208 #endif
209 }
210 
211 void
213 {
215 }
216 
217 typedef struct
218 {
225 
226 static void
228  ip4_fib_mtrie_8_ply_t * ply,
229  ip4_fib_mtrie_leaf_t new_leaf,
230  uword new_leaf_dst_address_bits)
231 {
232  ip4_fib_mtrie_leaf_t old_leaf;
233  uword i;
234 
236 
237  for (i = 0; i < ARRAY_LEN (ply->leaves); i++)
238  {
239  old_leaf = ply->leaves[i];
240 
241  /* Recurse into sub plies. */
242  if (!ip4_fib_mtrie_leaf_is_terminal (old_leaf))
243  {
244  ip4_fib_mtrie_8_ply_t *sub_ply =
245  get_next_ply_for_leaf (m, old_leaf);
246  set_ply_with_more_specific_leaf (m, sub_ply, new_leaf,
247  new_leaf_dst_address_bits);
248  }
249 
250  /* Replace less specific terminal leaves with new leaf. */
251  else if (new_leaf_dst_address_bits >=
253  {
254  __sync_val_compare_and_swap (&ply->leaves[i], old_leaf, new_leaf);
255  ASSERT (ply->leaves[i] == new_leaf);
256  ply->dst_address_bits_of_leaves[i] = new_leaf_dst_address_bits;
258  }
259  }
260 }
261 
262 static void
265  u32 old_ply_index, u32 dst_address_byte_index)
266 {
267  ip4_fib_mtrie_leaf_t old_leaf, new_leaf;
268  i32 n_dst_bits_next_plies;
269  u8 dst_byte;
270  ip4_fib_mtrie_8_ply_t *old_ply;
271 
272  old_ply = pool_elt_at_index (ip4_ply_pool, old_ply_index);
273 
274  ASSERT (a->dst_address_length <= 32);
275  ASSERT (dst_address_byte_index < ARRAY_LEN (a->dst_address.as_u8));
276 
277  /* how many bits of the destination address are in the next PLY */
278  n_dst_bits_next_plies =
279  a->dst_address_length - BITS (u8) * (dst_address_byte_index + 1);
280 
281  dst_byte = a->dst_address.as_u8[dst_address_byte_index];
282 
283  /* Number of bits next plies <= 0 => insert leaves this ply. */
284  if (n_dst_bits_next_plies <= 0)
285  {
286  /* The mask length of the address to insert maps to this ply */
287  uword old_leaf_is_terminal;
288  u32 i, n_dst_bits_this_ply;
289 
290  /* The number of bits, and hence slots/buckets, we will fill */
291  n_dst_bits_this_ply = clib_min (8, -n_dst_bits_next_plies);
292  ASSERT ((a->dst_address.as_u8[dst_address_byte_index] &
293  pow2_mask (n_dst_bits_this_ply)) == 0);
294 
295  /* Starting at the value of the byte at this section of the v4 address
296  * fill the buckets/slots of the ply */
297  for (i = dst_byte; i < dst_byte + (1 << n_dst_bits_this_ply); i++)
298  {
299  ip4_fib_mtrie_8_ply_t *new_ply;
300 
301  old_leaf = old_ply->leaves[i];
302  old_leaf_is_terminal = ip4_fib_mtrie_leaf_is_terminal (old_leaf);
303 
304  if (a->dst_address_length >= old_ply->dst_address_bits_of_leaves[i])
305  {
306  /* The new leaf is more or equally specific than the one currently
307  * occupying the slot */
309 
310  if (old_leaf_is_terminal)
311  {
312  /* The current leaf is terminal, we can replace it with
313  * the new one */
314  old_ply->n_non_empty_leafs -=
315  ip4_fib_mtrie_leaf_is_non_empty (old_ply, i);
316 
317  old_ply->dst_address_bits_of_leaves[i] =
319  __sync_val_compare_and_swap (&old_ply->leaves[i], old_leaf,
320  new_leaf);
321  ASSERT (old_ply->leaves[i] == new_leaf);
322 
323  old_ply->n_non_empty_leafs +=
324  ip4_fib_mtrie_leaf_is_non_empty (old_ply, i);
325  ASSERT (old_ply->n_non_empty_leafs <=
326  ARRAY_LEN (old_ply->leaves));
327  }
328  else
329  {
330  /* Existing leaf points to another ply. We need to place
331  * new_leaf into all more specific slots. */
332  new_ply = get_next_ply_for_leaf (m, old_leaf);
333  set_ply_with_more_specific_leaf (m, new_ply, new_leaf,
334  a->dst_address_length);
335  }
336  }
337  else if (!old_leaf_is_terminal)
338  {
339  /* The current leaf is less specific and not termial (i.e. a ply),
340  * recurse on down the trie */
341  new_ply = get_next_ply_for_leaf (m, old_leaf);
342  set_leaf (m, a, new_ply - ip4_ply_pool,
343  dst_address_byte_index + 1);
344  }
345  /*
346  * else
347  * the route we are adding is less specific than the leaf currently
348  * occupying this slot. leave it there
349  */
350  }
351  }
352  else
353  {
354  /* The address to insert requires us to move down at a lower level of
355  * the trie - recurse on down */
356  ip4_fib_mtrie_8_ply_t *new_ply;
357  u8 ply_base_len;
358 
359  ply_base_len = 8 * (dst_address_byte_index + 1);
360 
361  old_leaf = old_ply->leaves[dst_byte];
362 
363  if (ip4_fib_mtrie_leaf_is_terminal (old_leaf))
364  {
365  /* There is a leaf occupying the slot. Replace it with a new ply */
366  old_ply->n_non_empty_leafs -=
367  ip4_fib_mtrie_leaf_is_non_empty (old_ply, dst_byte);
368 
369  new_leaf = ply_create (m, old_leaf,
371  [dst_byte], ply_base_len),
372  ply_base_len);
373  new_ply = get_next_ply_for_leaf (m, new_leaf);
374 
375  /* Refetch since ply_create may move pool. */
376  old_ply = pool_elt_at_index (ip4_ply_pool, old_ply_index);
377 
378  __sync_val_compare_and_swap (&old_ply->leaves[dst_byte], old_leaf,
379  new_leaf);
380  ASSERT (old_ply->leaves[dst_byte] == new_leaf);
381  old_ply->dst_address_bits_of_leaves[dst_byte] = ply_base_len;
382 
383  old_ply->n_non_empty_leafs +=
384  ip4_fib_mtrie_leaf_is_non_empty (old_ply, dst_byte);
385  ASSERT (old_ply->n_non_empty_leafs >= 0);
386  }
387  else
388  new_ply = get_next_ply_for_leaf (m, old_leaf);
389 
390  set_leaf (m, a, new_ply - ip4_ply_pool, dst_address_byte_index + 1);
391  }
392 }
393 
394 static void
397 {
398  ip4_fib_mtrie_leaf_t old_leaf, new_leaf;
399  ip4_fib_mtrie_16_ply_t *old_ply;
400  i32 n_dst_bits_next_plies;
401  u16 dst_byte;
402 
403  old_ply = &m->root_ply;
404 
405  ASSERT (a->dst_address_length <= 32);
406 
407  /* how many bits of the destination address are in the next PLY */
408  n_dst_bits_next_plies = a->dst_address_length - BITS (u16);
409 
410  dst_byte = a->dst_address.as_u16[0];
411 
412  /* Number of bits next plies <= 0 => insert leaves this ply. */
413  if (n_dst_bits_next_plies <= 0)
414  {
415  /* The mask length of the address to insert maps to this ply */
416  uword old_leaf_is_terminal;
417  u32 i, n_dst_bits_this_ply;
418 
419  /* The number of bits, and hence slots/buckets, we will fill */
420  n_dst_bits_this_ply = 16 - a->dst_address_length;
421  ASSERT ((clib_host_to_net_u16 (a->dst_address.as_u16[0]) &
422  pow2_mask (n_dst_bits_this_ply)) == 0);
423 
424  /* Starting at the value of the byte at this section of the v4 address
425  * fill the buckets/slots of the ply */
426  for (i = 0; i < (1 << n_dst_bits_this_ply); i++)
427  {
428  ip4_fib_mtrie_8_ply_t *new_ply;
429  u16 slot;
430 
431  slot = clib_net_to_host_u16 (dst_byte);
432  slot += i;
433  slot = clib_host_to_net_u16 (slot);
434 
435  old_leaf = old_ply->leaves[slot];
436  old_leaf_is_terminal = ip4_fib_mtrie_leaf_is_terminal (old_leaf);
437 
438  if (a->dst_address_length >=
439  old_ply->dst_address_bits_of_leaves[slot])
440  {
441  /* The new leaf is more or equally specific than the one currently
442  * occupying the slot */
444 
445  if (old_leaf_is_terminal)
446  {
447  /* The current leaf is terminal, we can replace it with
448  * the new one */
449  old_ply->dst_address_bits_of_leaves[slot] =
451  __sync_val_compare_and_swap (&old_ply->leaves[slot],
452  old_leaf, new_leaf);
453  ASSERT (old_ply->leaves[slot] == new_leaf);
454  }
455  else
456  {
457  /* Existing leaf points to another ply. We need to place
458  * new_leaf into all more specific slots. */
459  new_ply = get_next_ply_for_leaf (m, old_leaf);
460  set_ply_with_more_specific_leaf (m, new_ply, new_leaf,
461  a->dst_address_length);
462  }
463  }
464  else if (!old_leaf_is_terminal)
465  {
466  /* The current leaf is less specific and not termial (i.e. a ply),
467  * recurse on down the trie */
468  new_ply = get_next_ply_for_leaf (m, old_leaf);
469  set_leaf (m, a, new_ply - ip4_ply_pool, 2);
470  }
471  /*
472  * else
473  * the route we are adding is less specific than the leaf currently
474  * occupying this slot. leave it there
475  */
476  }
477  }
478  else
479  {
480  /* The address to insert requires us to move down at a lower level of
481  * the trie - recurse on down */
482  ip4_fib_mtrie_8_ply_t *new_ply;
483  u8 ply_base_len;
484 
485  ply_base_len = 16;
486 
487  old_leaf = old_ply->leaves[dst_byte];
488 
489  if (ip4_fib_mtrie_leaf_is_terminal (old_leaf))
490  {
491  /* There is a leaf occupying the slot. Replace it with a new ply */
492  new_leaf = ply_create (m, old_leaf,
494  [dst_byte], ply_base_len),
495  ply_base_len);
496  new_ply = get_next_ply_for_leaf (m, new_leaf);
497 
498  __sync_val_compare_and_swap (&old_ply->leaves[dst_byte], old_leaf,
499  new_leaf);
500  ASSERT (old_ply->leaves[dst_byte] == new_leaf);
501  old_ply->dst_address_bits_of_leaves[dst_byte] = ply_base_len;
502  }
503  else
504  new_ply = get_next_ply_for_leaf (m, old_leaf);
505 
506  set_leaf (m, a, new_ply - ip4_ply_pool, 2);
507  }
508 }
509 
510 static uword
513  ip4_fib_mtrie_8_ply_t * old_ply, u32 dst_address_byte_index)
514 {
515  ip4_fib_mtrie_leaf_t old_leaf, del_leaf;
516  i32 n_dst_bits_next_plies;
517  i32 i, n_dst_bits_this_ply, old_leaf_is_terminal;
518  u8 dst_byte;
519 
520  ASSERT (a->dst_address_length <= 32);
521  ASSERT (dst_address_byte_index < ARRAY_LEN (a->dst_address.as_u8));
522 
523  n_dst_bits_next_plies =
524  a->dst_address_length - BITS (u8) * (dst_address_byte_index + 1);
525 
526  dst_byte = a->dst_address.as_u8[dst_address_byte_index];
527  if (n_dst_bits_next_plies < 0)
528  dst_byte &= ~pow2_mask (-n_dst_bits_next_plies);
529 
530  n_dst_bits_this_ply =
531  n_dst_bits_next_plies <= 0 ? -n_dst_bits_next_plies : 0;
532  n_dst_bits_this_ply = clib_min (8, n_dst_bits_this_ply);
533 
535 
536  for (i = dst_byte; i < dst_byte + (1 << n_dst_bits_this_ply); i++)
537  {
538  old_leaf = old_ply->leaves[i];
539  old_leaf_is_terminal = ip4_fib_mtrie_leaf_is_terminal (old_leaf);
540 
541  if (old_leaf == del_leaf
542  || (!old_leaf_is_terminal
543  && unset_leaf (m, a, get_next_ply_for_leaf (m, old_leaf),
544  dst_address_byte_index + 1)))
545  {
546  old_ply->n_non_empty_leafs -=
547  ip4_fib_mtrie_leaf_is_non_empty (old_ply, i);
548 
549  old_ply->leaves[i] =
551  old_ply->dst_address_bits_of_leaves[i] =
554 
555  old_ply->n_non_empty_leafs +=
556  ip4_fib_mtrie_leaf_is_non_empty (old_ply, i);
557 
558  ASSERT (old_ply->n_non_empty_leafs >= 0);
559  if (old_ply->n_non_empty_leafs == 0 && dst_address_byte_index > 0)
560  {
561  pool_put (ip4_ply_pool, old_ply);
562  /* Old ply was deleted. */
563  return 1;
564  }
565 #if CLIB_DEBUG > 0
566  else if (dst_address_byte_index)
567  {
568  int ii, count = 0;
569  for (ii = 0; ii < ARRAY_LEN (old_ply->leaves); ii++)
570  {
571  count += ip4_fib_mtrie_leaf_is_non_empty (old_ply, ii);
572  }
573  ASSERT (count);
574  }
575 #endif
576  }
577  }
578 
579  /* Old ply was not deleted. */
580  return 0;
581 }
582 
583 static void
586 {
587  ip4_fib_mtrie_leaf_t old_leaf, del_leaf;
588  i32 n_dst_bits_next_plies;
589  i32 i, n_dst_bits_this_ply, old_leaf_is_terminal;
590  u16 dst_byte;
591  ip4_fib_mtrie_16_ply_t *old_ply;
592 
593  ASSERT (a->dst_address_length <= 32);
594 
595  old_ply = &m->root_ply;
596  n_dst_bits_next_plies = a->dst_address_length - BITS (u16);
597 
598  dst_byte = a->dst_address.as_u16[0];
599 
600  n_dst_bits_this_ply = (n_dst_bits_next_plies <= 0 ?
601  (16 - a->dst_address_length) : 0);
602 
604 
605  /* Starting at the value of the byte at this section of the v4 address
606  * fill the buckets/slots of the ply */
607  for (i = 0; i < (1 << n_dst_bits_this_ply); i++)
608  {
609  u16 slot;
610 
611  slot = clib_net_to_host_u16 (dst_byte);
612  slot += i;
613  slot = clib_host_to_net_u16 (slot);
614 
615  old_leaf = old_ply->leaves[slot];
616  old_leaf_is_terminal = ip4_fib_mtrie_leaf_is_terminal (old_leaf);
617 
618  if (old_leaf == del_leaf
619  || (!old_leaf_is_terminal
620  && unset_leaf (m, a, get_next_ply_for_leaf (m, old_leaf), 2)))
621  {
622  old_ply->leaves[slot] =
625  }
626  }
627 }
628 
629 void
631  const ip4_address_t * dst_address,
632  u32 dst_address_length, u32 adj_index)
633 {
635  ip4_main_t *im = &ip4_main;
636 
637  /* Honor dst_address_length. Fib masks are in network byte order */
638  a.dst_address.as_u32 = (dst_address->as_u32 &
639  im->fib_masks[dst_address_length]);
640  a.dst_address_length = dst_address_length;
641  a.adj_index = adj_index;
642 
643  set_root_leaf (m, &a);
644 }
645 
646 void
648  const ip4_address_t * dst_address,
649  u32 dst_address_length,
650  u32 adj_index,
651  u32 cover_address_length, u32 cover_adj_index)
652 {
654  ip4_main_t *im = &ip4_main;
655 
656  /* Honor dst_address_length. Fib masks are in network byte order */
657  a.dst_address.as_u32 = (dst_address->as_u32 &
658  im->fib_masks[dst_address_length]);
659  a.dst_address_length = dst_address_length;
660  a.adj_index = adj_index;
661  a.cover_adj_index = cover_adj_index;
662  a.cover_address_length = cover_address_length;
663 
664  /* the top level ply is never removed */
665  unset_root_leaf (m, &a);
666 }
667 
668 /* Returns number of bytes of memory used by mtrie. */
669 static uword
671 {
672  uword bytes, i;
673 
674  bytes = sizeof (p[0]);
675  for (i = 0; i < ARRAY_LEN (p->leaves); i++)
676  {
677  ip4_fib_mtrie_leaf_t l = p->leaves[i];
679  bytes += mtrie_ply_memory_usage (m, get_next_ply_for_leaf (m, l));
680  }
681 
682  return bytes;
683 }
684 
685 /* Returns number of bytes of memory used by mtrie. */
686 static uword
688 {
689  uword bytes, i;
690 
691  bytes = sizeof (*m);
692  for (i = 0; i < ARRAY_LEN (m->root_ply.leaves); i++)
693  {
696  bytes += mtrie_ply_memory_usage (m, get_next_ply_for_leaf (m, l));
697  }
698 
699  return bytes;
700 }
701 
702 static u8 *
703 format_ip4_fib_mtrie_leaf (u8 * s, va_list * va)
704 {
705  ip4_fib_mtrie_leaf_t l = va_arg (*va, ip4_fib_mtrie_leaf_t);
706 
708  s = format (s, "lb-index %d", ip4_fib_mtrie_leaf_get_adj_index (l));
709  else
710  s = format (s, "next ply %d", ip4_fib_mtrie_leaf_get_next_ply_index (l));
711  return s;
712 }
713 
714 #define FORMAT_PLY(s, _p, _i, _base_address, _ply_max_len, _indent) \
715 ({ \
716  u32 a, ia_length; \
717  ip4_address_t ia; \
718  ip4_fib_mtrie_leaf_t _l = p->leaves[(_i)]; \
719  \
720  a = (_base_address) + ((_i) << (32 - (_ply_max_len))); \
721  ia.as_u32 = clib_host_to_net_u32 (a); \
722  ia_length = (_p)->dst_address_bits_of_leaves[(_i)]; \
723  s = format (s, "\n%U%20U %U", \
724  format_white_space, (_indent) + 2, \
725  format_ip4_address_and_length, &ia, ia_length, \
726  format_ip4_fib_mtrie_leaf, _l); \
727  \
728  if (ip4_fib_mtrie_leaf_is_next_ply (_l)) \
729  s = format (s, "\n%U%U", \
730  format_white_space, (_indent) + 2, \
731  format_ip4_fib_mtrie_ply, m, a, \
732  ip4_fib_mtrie_leaf_get_next_ply_index (_l)); \
733  s; \
734 })
735 
736 static u8 *
737 format_ip4_fib_mtrie_ply (u8 * s, va_list * va)
738 {
739  ip4_fib_mtrie_t *m = va_arg (*va, ip4_fib_mtrie_t *);
740  u32 base_address = va_arg (*va, u32);
741  u32 ply_index = va_arg (*va, u32);
743  uword indent;
744  int i;
745 
746  p = pool_elt_at_index (ip4_ply_pool, ply_index);
747  indent = format_get_indent (s);
748  s = format (s, "ply index %d, %d non-empty leaves", ply_index,
749  p->n_non_empty_leafs);
750 
751  for (i = 0; i < ARRAY_LEN (p->leaves); i++)
752  {
754  {
755  FORMAT_PLY (s, p, i, base_address,
756  p->dst_address_bits_base + 8, indent);
757  }
758  }
759 
760  return s;
761 }
762 
763 u8 *
764 format_ip4_fib_mtrie (u8 * s, va_list * va)
765 {
766  ip4_fib_mtrie_t *m = va_arg (*va, ip4_fib_mtrie_t *);
768  u32 base_address = 0;
769  int i;
770 
771  s = format (s, "%d plies, memory usage %U\n",
772  pool_elts (ip4_ply_pool),
774  s = format (s, "root-ply");
775  p = &m->root_ply;
776 
777  for (i = 0; i < ARRAY_LEN (p->leaves); i++)
778  {
779  u16 slot;
780 
781  slot = clib_host_to_net_u16 (i);
782 
783  if (p->dst_address_bits_of_leaves[slot] > 0)
784  {
785  FORMAT_PLY (s, p, slot, base_address, 16, 2);
786  }
787  }
788 
789  return s;
790 }
791 
792 static clib_error_t *
794 {
795  /* Burn one ply so index 0 is taken */
797 
798  pool_get (ip4_ply_pool, p);
799 
800  return (NULL);
801 }
802 
804 
805 /*
806  * fd.io coding-style-patch-verification: ON
807  *
808  * Local Variables:
809  * eval: (c-set-style "gnu")
810  * End:
811  */
static ip4_fib_mtrie_8_ply_t * get_next_ply_for_leaf(ip4_fib_mtrie_t *m, ip4_fib_mtrie_leaf_t l)
Definition: ip4_mtrie.c:188
sll srl srl sll sra u16x4 i
Definition: vector_sse2.h:337
#define clib_min(x, y)
Definition: clib.h:332
#define CLIB_UNUSED(x)
Definition: clib.h:79
static ip4_fib_mtrie_leaf_t ply_create(ip4_fib_mtrie_t *m, ip4_fib_mtrie_leaf_t init_leaf, u32 leaf_prefix_len, u32 ply_base_len)
Definition: ip4_mtrie.c:174
a
Definition: bitmap.h:516
The mutiway-TRIE.
Definition: ip4_mtrie.h:129
#define PLY_INIT_LEAVES(p)
Definition: ip4_mtrie.c:126
static void set_leaf(ip4_fib_mtrie_t *m, const ip4_fib_mtrie_set_unset_leaf_args_t *a, u32 old_ply_index, u32 dst_address_byte_index)
Definition: ip4_mtrie.c:263
ip4_fib_mtrie_8_ply_t * ip4_ply_pool
Global pool of IPv4 8bit PLYs.
Definition: ip4_mtrie.c:48
#define NULL
Definition: clib.h:55
ip4_fib_mtrie_leaf_t leaves[256]
Definition: ip4_mtrie.h:93
static void unset_root_leaf(ip4_fib_mtrie_t *m, const ip4_fib_mtrie_set_unset_leaf_args_t *a)
Definition: ip4_mtrie.c:584
u8 * format(u8 *s, const char *fmt,...)
Definition: format.c:419
static u32 ip4_fib_mtrie_leaf_is_non_empty(ip4_fib_mtrie_8_ply_t *p, u8 dst_byte)
Definition: ip4_mtrie.c:51
#define pool_get(P, E)
Allocate an object E from a pool P (unspecified alignment).
Definition: pool.h:200
u8 dst_address_bits_of_leaves[PLY_16_SIZE]
Prefix length for terminal leaves.
Definition: ip4_mtrie.h:80
#define IP4_FIB_MTRIE_LEAF_EMPTY
Definition: ip4_mtrie.h:54
One ply of the 4 ply mtrie fib.
Definition: ip4_mtrie.h:86
static void set_ply_with_more_specific_leaf(ip4_fib_mtrie_t *m, ip4_fib_mtrie_8_ply_t *ply, ip4_fib_mtrie_leaf_t new_leaf, uword new_leaf_dst_address_bits)
Definition: ip4_mtrie.c:227
static uword mtrie_memory_usage(ip4_fib_mtrie_t *m)
Definition: ip4_mtrie.c:687
#define VLIB_INIT_FUNCTION(x)
Definition: init.h:111
#define always_inline
Definition: clib.h:84
static uword pow2_mask(uword x)
Definition: clib.h:257
static uword format_get_indent(u8 *s)
Definition: format.h:72
int i32
Definition: types.h:81
void ip4_mtrie_free(ip4_fib_mtrie_t *m)
Free an mtrie, It must be emty when free&#39;d.
Definition: ip4_mtrie.c:196
u32 ip4_fib_mtrie_leaf_t
Definition: ip4_mtrie.h:52
u8 * format_memory_size(u8 *s, va_list *va)
Definition: std-formats.c:193
ip4_fib_mtrie_leaf_t leaves[PLY_16_SIZE]
Definition: ip4_mtrie.h:70
static u32 ip4_fib_mtrie_leaf_get_adj_index(ip4_fib_mtrie_leaf_t n)
From the stored slot value extract the LB index value.
Definition: ip4_mtrie.h:187
void ip4_mtrie_init(ip4_fib_mtrie_t *m)
Initialise an mtrie.
Definition: ip4_mtrie.c:212
static u8 * format_ip4_fib_mtrie_leaf(u8 *s, va_list *va)
Definition: ip4_mtrie.c:703
#define pool_elt_at_index(p, i)
Returns pointer to element at given index.
Definition: pool.h:397
u16 as_u16[2]
Definition: ip4_packet.h:55
u8 * format_ip4_fib_mtrie(u8 *s, va_list *va)
Definition: ip4_mtrie.c:764
static void set_root_leaf(ip4_fib_mtrie_t *m, const ip4_fib_mtrie_set_unset_leaf_args_t *a)
Definition: ip4_mtrie.c:395
#define pool_put(P, E)
Free an object E in pool P.
Definition: pool.h:241
static uword mtrie_ply_memory_usage(ip4_fib_mtrie_t *m, ip4_fib_mtrie_8_ply_t *p)
Definition: ip4_mtrie.c:670
#define pool_get_aligned(P, E, A)
Allocate an object E from a pool P (general version).
Definition: pool.h:169
u8 dst_address_bits_of_leaves[256]
Prefix length for leaves/ply.
Definition: ip4_mtrie.h:103
ip4_fib_mtrie_16_ply_t root_ply
Embed the PLY with the mtrie struct.
Definition: ip4_mtrie.h:136
#define ARRAY_LEN(x)
Definition: clib.h:59
#define PLY_INIT(p, init, prefix_len, ply_base_len)
Definition: ip4_mtrie.c:140
static clib_error_t * ip4_mtrie_module_init(vlib_main_t *vm)
Definition: ip4_mtrie.c:793
#define FORMAT_PLY(s, _p, _i, _base_address, _ply_max_len, _indent)
Definition: ip4_mtrie.c:714
#define ASSERT(truth)
unsigned int u32
Definition: types.h:88
IPv4 main type.
Definition: ip4.h:83
i32 n_non_empty_leafs
Number of non-empty leafs (whether terminal or not).
Definition: ip4_mtrie.h:108
static void init(void)
Definition: client.c:76
static u32 ip4_fib_mtrie_leaf_is_next_ply(ip4_fib_mtrie_leaf_t n)
Definition: ip4_mtrie.c:73
#define clib_max(x, y)
Definition: clib.h:325
u64 uword
Definition: types.h:112
i32 dst_address_bits_base
The length of the ply&#39;s coviering prefix.
Definition: ip4_mtrie.h:115
unsigned short u16
Definition: types.h:57
unsigned char u8
Definition: types.h:56
void ip4_fib_mtrie_route_add(ip4_fib_mtrie_t *m, const ip4_address_t *dst_address, u32 dst_address_length, u32 adj_index)
Add a route/rntry to the mtrie.
Definition: ip4_mtrie.c:630
static ip4_fib_mtrie_leaf_t ip4_fib_mtrie_leaf_set_adj_index(u32 adj_index)
Definition: ip4_mtrie.c:64
ip4_main_t ip4_main
Global ip4 main structure.
Definition: ip4_forward.c:1168
static u32 ip4_fib_mtrie_leaf_get_next_ply_index(ip4_fib_mtrie_leaf_t n)
Definition: ip4_mtrie.c:79
void ip4_fib_mtrie_route_del(ip4_fib_mtrie_t *m, const ip4_address_t *dst_address, u32 dst_address_length, u32 adj_index, u32 cover_address_length, u32 cover_adj_index)
remove a route/rntry to the mtrie
Definition: ip4_mtrie.c:647
#define CLIB_CACHE_LINE_BYTES
Definition: cache.h:67
static uword unset_leaf(ip4_fib_mtrie_t *m, const ip4_fib_mtrie_set_unset_leaf_args_t *a, ip4_fib_mtrie_8_ply_t *old_ply, u32 dst_address_byte_index)
Definition: ip4_mtrie.c:511
#define BITS(x)
Definition: clib.h:58
static u8 * format_ip4_fib_mtrie_ply(u8 *s, va_list *va)
Definition: ip4_mtrie.c:737
static void ply_16_init(ip4_fib_mtrie_16_ply_t *p, ip4_fib_mtrie_leaf_t init, uword prefix_len)
Definition: ip4_mtrie.c:165
static u32 ip4_fib_mtrie_leaf_is_terminal(ip4_fib_mtrie_leaf_t n)
Is the leaf terminal (i.e.
Definition: ip4_mtrie.h:178
static void ply_8_init(ip4_fib_mtrie_8_ply_t *p, ip4_fib_mtrie_leaf_t init, uword prefix_len, u32 ply_base_len)
Definition: ip4_mtrie.c:158
u32 fib_masks[33]
Definition: ip4.h:96
static ip4_fib_mtrie_leaf_t ip4_fib_mtrie_leaf_set_next_ply_index(u32 i)
Definition: ip4_mtrie.c:86
static uword pool_elts(void *v)
Number of active elements in a pool.
Definition: pool.h:109