FD.io VPP  v21.06-3-gbb25fbf28
Vector Packet Processing
radix.c
Go to the documentation of this file.
1 /* $NetBSD: radix.c,v 1.47 2016/12/12 03:55:57 ozaki-r Exp $ */
2 
3 /*
4  * Copyright (c) 1988, 1989, 1993
5  * The Regents of the University of California. All rights reserved.
6  *
7  * Redistribution and use in source and binary forms, with or without
8  * modification, are permitted provided that the following conditions
9  * are met:
10  * 1. Redistributions of source code must retain the above copyright
11  * notice, this list of conditions and the following disclaimer.
12  * 2. Redistributions in binary form must reproduce the above copyright
13  * notice, this list of conditions and the following disclaimer in the
14  * documentation and/or other materials provided with the distribution.
15  * 3. Neither the name of the University nor the names of its contributors
16  * may be used to endorse or promote products derived from this software
17  * without specific prior written permission.
18  *
19  * THIS SOFTWARE IS PROVIDED BY THE REGENTS AND CONTRIBUTORS ``AS IS'' AND
20  * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
21  * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
22  * ARE DISCLAIMED. IN NO EVENT SHALL THE REGENTS OR CONTRIBUTORS BE LIABLE
23  * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
24  * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
25  * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
26  * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
27  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
28  * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
29  * SUCH DAMAGE.
30  *
31  * @(#)radix.c 8.6 (Berkeley) 10/17/95
32  */
33 
34 /*
35  * Routines to build and maintain radix trees for routing lookups.
36  */
37 
38 #include <vnet/util/radix.h>
39 
40 typedef void (*rn_printer_t)(void *, const char *fmt, ...);
41 
42 static int max_keylen = 33; // me
45 static char *addmask_key;
46 static const char normal_chars[] =
47  {0, 0x80, 0xc0, 0xe0, 0xf0, 0xf8, 0xfc, 0xfe, -1};
48 static char *rn_zeros, *rn_ones;
49 
50 #define rn_masktop (mask_rnhead->rnh_treetop)
51 
52 static int rn_satisfies_leaf(const char *, struct radix_node *, int);
53 static int rn_lexobetter(const void *, const void *);
54 static struct radix_mask *rn_new_radix_mask(struct radix_node *,
55  struct radix_mask *);
56 static struct radix_node *rn_walknext(struct radix_node *, rn_printer_t,
57  void *);
58 static struct radix_node *rn_walkfirst(struct radix_node *, rn_printer_t,
59  void *);
60 static void rn_nodeprint(struct radix_node *, rn_printer_t, void *,
61  const char *);
62 
63 #define SUBTREE_OPEN "[ "
64 #define SUBTREE_CLOSE " ]"
65 
66 #ifdef RN_DEBUG
67 static void rn_treeprint(struct radix_node_head *, rn_printer_t, void *);
68 #endif /* RN_DEBUG */
69 
70 #define MIN(x,y) (((x)<(y))?(x):(y))
71 
72 static struct radix_mask*
73 rm_alloc (void)
74 {
75  struct radix_mask *rm = clib_mem_alloc(sizeof(struct radix_mask));
76 
77  clib_memset(rm, 0, sizeof(*rm));
78 
79  return (rm);
80 }
81 
82 static void
83 rm_free (struct radix_mask *rm)
84 {
85  clib_mem_free(rm);
86 }
87 
88 #define R_Malloc(p, t, n) \
89 { \
90  p = (t) clib_mem_alloc((unsigned int)(n)); \
91  clib_memset(p, 0, n); \
92 }
93 #define Free(p) clib_mem_free((p))
94 #define log(a,b, c...)
95 #define bool i32
96 
97 /*
98  * The data structure for the keys is a radix tree with one way
99  * branching removed. The index rn_b at an internal node n represents a bit
100  * position to be tested. The tree is arranged so that all descendants
101  * of a node n have keys whose bits all agree up to position rn_b - 1.
102  * (We say the index of n is rn_b.)
103  *
104  * There is at least one descendant which has a one bit at position rn_b,
105  * and at least one with a zero there.
106  *
107  * A route is determined by a pair of key and mask. We require that the
108  * bit-wise logical and of the key and mask to be the key.
109  * We define the index of a route to associated with the mask to be
110  * the first bit number in the mask where 0 occurs (with bit number 0
111  * representing the highest order bit).
112  *
113  * We say a mask is normal if every bit is 0, past the index of the mask.
114  * If a node n has a descendant (k, m) with index(m) == index(n) == rn_b,
115  * and m is a normal mask, then the route applies to every descendant of n.
116  * If the index(m) < rn_b, this implies the trailing last few bits of k
117  * before bit b are all 0, (and hence consequently true of every descendant
118  * of n), so the route applies to all descendants of the node as well.
119  *
120  * Similar logic shows that a non-normal mask m such that
121  * index(m) <= index(n) could potentially apply to many children of n.
122  * Thus, for each non-host route, we attach its mask to a list at an internal
123  * node as high in the tree as we can go.
124  *
125  * The present version of the code makes use of normal routes in short-
126  * circuiting an explicit mask and compare operation when testing whether
127  * a key satisfies a normal route, and also in remembering the unique leaf
128  * that governs a subtree.
129  */
130 
131 struct radix_node *
133  const void *v_arg,
134  struct radix_node *head)
135 {
136  const u8 * const v = v_arg;
137  struct radix_node *x;
138 
139  for (x = head; x->rn_b >= 0;) {
140  if (x->rn_bmask & v[x->rn_off])
141  x = x->rn_r;
142  else
143  x = x->rn_l;
144  }
145  return x;
146 }
147 
148 struct radix_node *
150  const void *v_arg,
151  struct radix_node *head,
152  const void *m_arg)
153 {
154  struct radix_node *x;
155  const u8 * const v = v_arg;
156  const u8 * const m = m_arg;
157 
158  for (x = head; x->rn_b >= 0;) {
159  if ((x->rn_bmask & m[x->rn_off]) &&
160  (x->rn_bmask & v[x->rn_off]))
161  x = x->rn_r;
162  else
163  x = x->rn_l;
164  }
165  return x;
166 }
167 
168 int
170  const void *m_arg,
171  const void *n_arg)
172 {
173  const char *m = m_arg;
174  const char *n = n_arg;
175  const char *lim = n + *(const u8 *)n;
176  const char *lim2 = lim;
177  int longer = (*(const u8 *)n++) - (int)(*(const u8 *)m++);
178  int masks_are_equal = 1;
179 
180  if (longer > 0)
181  lim -= longer;
182  while (n < lim) {
183  if (*n & ~(*m))
184  return 0;
185  if (*n++ != *m++)
186  masks_are_equal = 0;
187  }
188  while (n < lim2)
189  if (*n++)
190  return 0;
191  if (masks_are_equal && (longer < 0))
192  for (lim2 = m - longer; m < lim2; )
193  if (*m++)
194  return 1;
195  return !masks_are_equal;
196 }
197 
198 struct radix_node *
200  const void *v_arg,
201  const void *m_arg,
202  struct radix_node_head *head)
203 {
204  struct radix_node *x;
205  const char *netmask = NULL;
206 
207  if (m_arg) {
208  if ((x = rn_addmask(m_arg, 1, head->rnh_treetop->rn_off)) == 0)
209  return NULL;
210  netmask = x->rn_key;
211  }
212  x = rn_match(v_arg, head);
213  if (x != NULL && netmask != NULL) {
214  while (x != NULL && x->rn_mask != netmask)
215  x = x->rn_dupedkey;
216  }
217  return x;
218 }
219 
220 static int
222  const char *trial,
223  struct radix_node *leaf,
224  int skip)
225 {
226  const char *cp = trial;
227  const char *cp2 = leaf->rn_key;
228  const char *cp3 = leaf->rn_mask;
229  const char *cplim;
230  int length = MIN(*(const u8 *)cp, *(const u8 *)cp2);
231 
232  if (cp3 == 0)
233  cp3 = rn_ones;
234  else
235  length = MIN(length, *(const u8 *)cp3);
236  cplim = cp + length; cp3 += skip; cp2 += skip;
237  for (cp += skip; cp < cplim; cp++, cp2++, cp3++)
238  if ((*cp ^ *cp2) & *cp3)
239  return 0;
240  return 1;
241 }
242 
243 struct radix_node *
245  const void *v_arg,
246  struct radix_node_head *head)
247 {
248  const char * const v = v_arg;
249  struct radix_node *t = head->rnh_treetop;
250  struct radix_node *top = t;
251  struct radix_node *x;
252  struct radix_node *saved_t;
253  const char *cp = v;
254  const char *cp2;
255  const char *cplim;
256  int off = t->rn_off;
257  int vlen = *(const u8 *)cp;
258  int matched_off;
259  int test, b, rn_b;
260 
261  /*
262  * Open code rn_search(v, top) to avoid overhead of extra
263  * subroutine call.
264  */
265  for (; t->rn_b >= 0; ) {
266  if (t->rn_bmask & cp[t->rn_off])
267  t = t->rn_r;
268  else
269  t = t->rn_l;
270  }
271  /*
272  * See if we match exactly as a host destination
273  * or at least learn how many bits match, for normal mask finesse.
274  *
275  * It doesn't hurt us to limit how many bytes to check
276  * to the length of the mask, since if it matches we had a genuine
277  * match and the leaf we have is the most specific one anyway;
278  * if it didn't match with a shorter length it would fail
279  * with a long one. This wins big for class B&C netmasks which
280  * are probably the most common case...
281  */
282  if (t->rn_mask)
283  vlen = *(const u8 *)t->rn_mask;
284  cp += off; cp2 = t->rn_key + off; cplim = v + vlen;
285  for (; cp < cplim; cp++, cp2++)
286  if (*cp != *cp2)
287  goto on1;
288  /*
289  * This extra grot is in case we are explicitly asked
290  * to look up the default. Ugh!
291  */
292  if ((t->rn_flags & RNF_ROOT) && t->rn_dupedkey)
293  t = t->rn_dupedkey;
294  return t;
295 on1:
296  test = (*cp ^ *cp2) & 0xff; /* find first bit that differs */
297  for (b = 7; (test >>= 1) > 0;)
298  b--;
299  matched_off = cp - v;
300  b += matched_off << 3;
301  rn_b = -1 - b;
302  /*
303  * If there is a host route in a duped-key chain, it will be first.
304  */
305  if ((saved_t = t)->rn_mask == 0)
306  t = t->rn_dupedkey;
307  for (; t; t = t->rn_dupedkey)
308  /*
309  * Even if we don't match exactly as a host,
310  * we may match if the leaf we wound up at is
311  * a route to a net.
312  */
313  if (t->rn_flags & RNF_NORMAL) {
314  if (rn_b <= t->rn_b)
315  return t;
316  } else if (rn_satisfies_leaf(v, t, matched_off))
317  return t;
318  t = saved_t;
319  /* start searching up the tree */
320  do {
321  struct radix_mask *m;
322  t = t->rn_p;
323  m = t->rn_mklist;
324  if (m) {
325  /*
326  * If non-contiguous masks ever become important
327  * we can restore the masking and open coding of
328  * the search and satisfaction test and put the
329  * calculation of "off" back before the "do".
330  */
331  do {
332  if (m->rm_flags & RNF_NORMAL) {
333  if (rn_b <= m->rm_b)
334  return m->rm_leaf;
335  } else {
336  off = MIN(t->rn_off, matched_off);
337  x = rn_search_m(v, t, m->rm_mask);
338  while (x && x->rn_mask != m->rm_mask)
339  x = x->rn_dupedkey;
340  if (x && rn_satisfies_leaf(v, x, off))
341  return x;
342  }
343  m = m->rm_mklist;
344  } while (m);
345  }
346  } while (t != top);
347  return NULL;
348 }
349 
350 static void
351 rn_nodeprint(struct radix_node *rn, rn_printer_t printer, void *arg,
352  const char *delim)
353 {
354  (*printer)(arg, "%s(%s%p: p<%p> l<%p> r<%p>)",
355  delim, ((void *)rn == arg) ? "*" : "", rn, rn->rn_p,
356  rn->rn_l, rn->rn_r);
357 }
358 
359 #ifdef RN_DEBUG
360 int rn_debug = 1;
361 
362 static void
363 rn_dbg_print(void *arg, const char *fmt, ...)
364 {
365  va_list ap;
366 
367  va_start(ap, fmt);
368  vlog(LOG_DEBUG, fmt, ap);
369  va_end(ap);
370 }
371 
372 static void
373 rn_treeprint(struct radix_node_head *h, rn_printer_t printer, void *arg)
374 {
375  struct radix_node *dup, *rn;
376  const char *delim;
377 
378  if (printer == NULL)
379  return;
380 
381  rn = rn_walkfirst(h->rnh_treetop, printer, arg);
382  for (;;) {
383  /* Process leaves */
384  delim = "";
385  for (dup = rn; dup != NULL; dup = dup->rn_dupedkey) {
386  if ((dup->rn_flags & RNF_ROOT) != 0)
387  continue;
388  rn_nodeprint(dup, printer, arg, delim);
389  delim = ", ";
390  }
391  rn = rn_walknext(rn, printer, arg);
392  if (rn->rn_flags & RNF_ROOT)
393  return;
394  }
395  /* NOTREACHED */
396 }
397 
398 #define traverse(__head, __rn) rn_treeprint((__head), rn_dbg_print, (__rn))
399 #endif /* RN_DEBUG */
400 
401 struct radix_node *
403  const void *v,
404  int b,
405  struct radix_node nodes[2])
406 {
407  struct radix_node *tt = nodes;
408  struct radix_node *t = tt + 1;
409  t->rn_b = b; t->rn_bmask = 0x80 >> (b & 7);
410  t->rn_l = tt; t->rn_off = b >> 3;
411  tt->rn_b = -1; tt->rn_key = v; tt->rn_p = t;
412  tt->rn_flags = t->rn_flags = RNF_ACTIVE;
413  return t;
414 }
415 
416 struct radix_node *
418  const void *v_arg,
419  struct radix_node_head *head,
420  int *dupentry,
421  struct radix_node nodes[2])
422 {
423  struct radix_node *top = head->rnh_treetop;
424  struct radix_node *t = rn_search(v_arg, top);
425  struct radix_node *tt;
426  const char *v = v_arg;
427  int head_off = top->rn_off;
428  int vlen = *((const u8 *)v);
429  const char *cp = v + head_off;
430  int b;
431  /*
432  * Find first bit at which v and t->rn_key differ
433  */
434  {
435  const char *cp2 = t->rn_key + head_off;
436  const char *cplim = v + vlen;
437  int cmp_res;
438 
439  while (cp < cplim)
440  if (*cp2++ != *cp++)
441  goto on1;
442  *dupentry = 1;
443  return t;
444 on1:
445  *dupentry = 0;
446  cmp_res = (cp[-1] ^ cp2[-1]) & 0xff;
447  for (b = (cp - v) << 3; cmp_res; b--)
448  cmp_res >>= 1;
449  }
450  {
451  struct radix_node *p, *x = top;
452  cp = v;
453  do {
454  p = x;
455  if (cp[x->rn_off] & x->rn_bmask)
456  x = x->rn_r;
457  else x = x->rn_l;
458  } while (b > (unsigned) x->rn_b); /* x->rn_b < b && x->rn_b >= 0 */
459 #ifdef RN_DEBUG
460  if (rn_debug)
461  log(LOG_DEBUG, "%s: Going In:\n", __func__), traverse(head, p);
462 #endif
463  t = rn_newpair(v_arg, b, nodes); tt = t->rn_l;
464  if ((cp[p->rn_off] & p->rn_bmask) == 0)
465  p->rn_l = t;
466  else
467  p->rn_r = t;
468  x->rn_p = t; t->rn_p = p; /* frees x, p as temp vars below */
469  if ((cp[t->rn_off] & t->rn_bmask) == 0) {
470  t->rn_r = x;
471  } else {
472  t->rn_r = tt; t->rn_l = x;
473  }
474 #ifdef RN_DEBUG
475  if (rn_debug) {
476  log(LOG_DEBUG, "%s: Coming Out:\n", __func__),
477  traverse(head, p);
478  }
479 #endif /* RN_DEBUG */
480  }
481  return tt;
482 }
483 
484 struct radix_node *
486  const void *n_arg,
487  int search,
488  int skip)
489 {
490  const char *netmask = n_arg;
491  const char *cp;
492  const char *cplim;
493  struct radix_node *x;
494  struct radix_node *saved_x;
495  int b = 0, mlen, j;
496  int maskduplicated, m0, isnormal;
497  static int last_zeroed = 0;
498 
499  if ((mlen = *(const u8 *)netmask) > max_keylen)
500  mlen = max_keylen;
501  if (skip == 0)
502  skip = 1;
503  if (mlen <= skip)
504  return mask_rnhead->rnh_nodes;
505  if (skip > 1)
506  memmove(addmask_key + 1, rn_ones + 1, skip - 1);
507  if ((m0 = mlen) > skip)
508  memmove(addmask_key + skip, netmask + skip, mlen - skip);
509  /*
510  * Trim trailing zeroes.
511  */
512  for (cp = addmask_key + mlen; (cp > addmask_key) && cp[-1] == 0;)
513  cp--;
514  mlen = cp - addmask_key;
515  if (mlen <= skip) {
516  if (m0 >= last_zeroed)
517  last_zeroed = mlen;
518  return mask_rnhead->rnh_nodes;
519  }
520  if (m0 < last_zeroed)
521  clib_memset(addmask_key + m0, 0, last_zeroed - m0);
522  *addmask_key = last_zeroed = mlen;
524  if (memcmp(addmask_key, x->rn_key, mlen) != 0)
525  x = 0;
526  if (x || search)
527  return x;
528  R_Malloc(x, struct radix_node *, max_keylen + 2 * sizeof (*x));
529  if ((saved_x = x) == NULL)
530  return NULL;
531  clib_memset(x, 0, max_keylen + 2 * sizeof (*x));
532  cp = netmask = (void *)(x + 2);
533  memmove(x + 2, addmask_key, mlen);
534  x = rn_insert(cp, mask_rnhead, &maskduplicated, x);
535  if (maskduplicated) {
536  log(LOG_ERR, "rn_addmask: mask impossibly already in tree\n");
537  Free(saved_x);
538  return x;
539  }
540  /*
541  * Calculate index of mask, and check for normalcy.
542  */
543  cplim = netmask + mlen; isnormal = 1;
544  for (cp = netmask + skip; (cp < cplim) && *(const u8 *)cp == 0xff;)
545  cp++;
546  if (cp != cplim) {
547  for (j = 0x80; (j & *cp) != 0; j >>= 1)
548  b++;
549  if (*cp != normal_chars[b] || cp != (cplim - 1))
550  isnormal = 0;
551  }
552  b += (cp - netmask) << 3;
553  x->rn_b = -1 - b;
554  if (isnormal)
555  x->rn_flags |= RNF_NORMAL;
556  return x;
557 }
558 
559 static int /* XXX: arbitrary ordering for non-contiguous masks */
561  const void *m_arg,
562  const void *n_arg)
563 {
564  const u8 *mp = m_arg;
565  const u8 *np = n_arg;
566  const u8 *lim;
567 
568  if (*mp > *np)
569  return 1; /* not really, but need to check longer one first */
570  if (*mp == *np)
571  for (lim = mp + *mp; mp < lim;)
572  if (*mp++ > *np++)
573  return 1;
574  return 0;
575 }
576 
577 static struct radix_mask *
579  struct radix_node *tt,
580  struct radix_mask *next)
581 {
582  struct radix_mask *m;
583 
584  m = rm_alloc();
585  if (m == NULL) {
586  log(LOG_ERR, "Mask for route not entered\n");
587  return NULL;
588  }
589  clib_memset(m, 0, sizeof(*m));
590  m->rm_b = tt->rn_b;
591  m->rm_flags = tt->rn_flags;
592  if (tt->rn_flags & RNF_NORMAL)
593  m->rm_leaf = tt;
594  else
595  m->rm_mask = tt->rn_mask;
596  m->rm_mklist = next;
597  tt->rn_mklist = m;
598  return m;
599 }
600 
601 struct radix_node *
603  const void *v_arg,
604  const void *n_arg,
605  struct radix_node_head *head,
606  struct radix_node treenodes[2])
607 {
608  const char *v = v_arg, *netmask = n_arg;
609  struct radix_node *t, *x = NULL, *tt;
610  struct radix_node *saved_tt, *top = head->rnh_treetop;
611  short b = 0, b_leaf = 0;
612  int keyduplicated;
613  const char *mmask;
614  struct radix_mask *m, **mp;
615 
616  /*
617  * In dealing with non-contiguous masks, there may be
618  * many different routes which have the same mask.
619  * We will find it useful to have a unique pointer to
620  * the mask to speed avoiding duplicate references at
621  * nodes and possibly save time in calculating indices.
622  */
623  if (netmask != NULL) {
624  if ((x = rn_addmask(netmask, 0, top->rn_off)) == NULL)
625  return NULL;
626  b_leaf = x->rn_b;
627  b = -1 - x->rn_b;
628  netmask = x->rn_key;
629  }
630  /*
631  * Deal with duplicated keys: attach node to previous instance
632  */
633  saved_tt = tt = rn_insert(v, head, &keyduplicated, treenodes);
634  if (keyduplicated) {
635  for (t = tt; tt != NULL; t = tt, tt = tt->rn_dupedkey) {
636  if (tt->rn_mask == netmask)
637  return NULL;
638  if (netmask == NULL ||
639  (tt->rn_mask != NULL &&
640  (b_leaf < tt->rn_b || /* index(netmask) > node */
641  rn_refines(netmask, tt->rn_mask) ||
642  rn_lexobetter(netmask, tt->rn_mask))))
643  break;
644  }
645  /*
646  * If the mask is not duplicated, we wouldn't
647  * find it among possible duplicate key entries
648  * anyway, so the above test doesn't hurt.
649  *
650  * We sort the masks for a duplicated key the same way as
651  * in a masklist -- most specific to least specific.
652  * This may require the unfortunate nuisance of relocating
653  * the head of the list.
654  *
655  * We also reverse, or doubly link the list through the
656  * parent pointer.
657  */
658  if (tt == saved_tt) {
659  struct radix_node *xx = x;
660  /* link in at head of list */
661  (tt = treenodes)->rn_dupedkey = t;
662  tt->rn_flags = t->rn_flags;
663  tt->rn_p = x = t->rn_p;
664  t->rn_p = tt;
665  if (x->rn_l == t)
666  x->rn_l = tt;
667  else
668  x->rn_r = tt;
669  saved_tt = tt;
670  x = xx;
671  } else {
672  (tt = treenodes)->rn_dupedkey = t->rn_dupedkey;
673  t->rn_dupedkey = tt;
674  tt->rn_p = t;
675  if (tt->rn_dupedkey)
676  tt->rn_dupedkey->rn_p = tt;
677  }
678  tt->rn_key = v;
679  tt->rn_b = -1;
680  tt->rn_flags = RNF_ACTIVE;
681  }
682  /*
683  * Put mask in tree.
684  */
685  if (netmask != NULL) {
686  tt->rn_mask = netmask;
687  tt->rn_b = x->rn_b;
688  tt->rn_flags |= x->rn_flags & RNF_NORMAL;
689  }
690  t = saved_tt->rn_p;
691  if (keyduplicated)
692  goto on2;
693  b_leaf = -1 - t->rn_b;
694  if (t->rn_r == saved_tt)
695  x = t->rn_l;
696  else
697  x = t->rn_r;
698  /* Promote general routes from below */
699  if (x->rn_b < 0) {
700  for (mp = &t->rn_mklist; x != NULL; x = x->rn_dupedkey) {
701  if (x->rn_mask != NULL && x->rn_b >= b_leaf &&
702  x->rn_mklist == NULL) {
703  *mp = m = rn_new_radix_mask(x, NULL);
704  if (m != NULL)
705  mp = &m->rm_mklist;
706  }
707  }
708  } else if (x->rn_mklist != NULL) {
709  /*
710  * Skip over masks whose index is > that of new node
711  */
712  for (mp = &x->rn_mklist; (m = *mp) != NULL; mp = &m->rm_mklist)
713  if (m->rm_b >= b_leaf)
714  break;
715  t->rn_mklist = m;
716  *mp = NULL;
717  }
718 on2:
719  /* Add new route to highest possible ancestor's list */
720  if (netmask == NULL || b > t->rn_b)
721  return tt; /* can't lift at all */
722  b_leaf = tt->rn_b;
723  do {
724  x = t;
725  t = t->rn_p;
726  } while (b <= t->rn_b && x != top);
727  /*
728  * Search through routes associated with node to
729  * insert new route according to index.
730  * Need same criteria as when sorting dupedkeys to avoid
731  * double loop on deletion.
732  */
733  for (mp = &x->rn_mklist; (m = *mp) != NULL; mp = &m->rm_mklist) {
734  if (m->rm_b < b_leaf)
735  continue;
736  if (m->rm_b > b_leaf)
737  break;
738  if (m->rm_flags & RNF_NORMAL) {
739  mmask = m->rm_leaf->rn_mask;
740  if (tt->rn_flags & RNF_NORMAL) {
741  log(LOG_ERR, "Non-unique normal route,"
742  " mask not entered\n");
743  return tt;
744  }
745  } else
746  mmask = m->rm_mask;
747  if (mmask == netmask) {
748  m->rm_refs++;
749  tt->rn_mklist = m;
750  return tt;
751  }
752  if (rn_refines(netmask, mmask) || rn_lexobetter(netmask, mmask))
753  break;
754  }
755  *mp = rn_new_radix_mask(tt, *mp);
756  return tt;
757 }
758 
759 struct radix_node *
761  const void *v_arg,
762  const void *netmask_arg,
763  struct radix_node_head *head,
764  struct radix_node *rn)
765 {
766  struct radix_node *t, *p, *x, *tt;
767  struct radix_mask *m, *saved_m, **mp;
768  struct radix_node *dupedkey, *saved_tt, *top;
769  const char *v, *netmask;
770  int b, head_off, vlen;
771 
772  v = v_arg;
773  netmask = netmask_arg;
774  x = head->rnh_treetop;
775  tt = rn_search(v, x);
776  head_off = x->rn_off;
777  vlen = *(const u8 *)v;
778  saved_tt = tt;
779  top = x;
780  if (tt == NULL ||
781  memcmp(v + head_off, tt->rn_key + head_off, vlen - head_off) != 0)
782  return NULL;
783  /*
784  * Delete our route from mask lists.
785  */
786  if (netmask != NULL) {
787  if ((x = rn_addmask(netmask, 1, head_off)) == NULL)
788  return NULL;
789  netmask = x->rn_key;
790  while (tt->rn_mask != netmask)
791  if ((tt = tt->rn_dupedkey) == NULL)
792  return NULL;
793  }
794  if (tt->rn_mask == NULL || (saved_m = m = tt->rn_mklist) == NULL)
795  goto on1;
796  if (tt->rn_flags & RNF_NORMAL) {
797  if (m->rm_leaf != tt || m->rm_refs > 0) {
798  log(LOG_ERR, "rn_delete: inconsistent annotation\n");
799  return NULL; /* dangling ref could cause disaster */
800  }
801  } else {
802  if (m->rm_mask != tt->rn_mask) {
803  log(LOG_ERR, "rn_delete: inconsistent annotation\n");
804  goto on1;
805  }
806  if (--m->rm_refs >= 0)
807  goto on1;
808  }
809  b = -1 - tt->rn_b;
810  t = saved_tt->rn_p;
811  if (b > t->rn_b)
812  goto on1; /* Wasn't lifted at all */
813  do {
814  x = t;
815  t = t->rn_p;
816  } while (b <= t->rn_b && x != top);
817  for (mp = &x->rn_mklist; (m = *mp) != NULL; mp = &m->rm_mklist) {
818  if (m == saved_m) {
819  *mp = m->rm_mklist;
820  rm_free(m);
821  break;
822  }
823  }
824  if (m == NULL) {
825  log(LOG_ERR, "rn_delete: couldn't find our annotation\n");
826  if (tt->rn_flags & RNF_NORMAL)
827  return NULL; /* Dangling ref to us */
828  }
829 on1:
830  /*
831  * Eliminate us from tree
832  */
833  if (tt->rn_flags & RNF_ROOT)
834  return NULL;
835 #ifdef RN_DEBUG
836  if (rn_debug)
837  log(LOG_DEBUG, "%s: Going In:\n", __func__), traverse(head, tt);
838 #endif
839  t = tt->rn_p;
840  dupedkey = saved_tt->rn_dupedkey;
841  if (dupedkey != NULL) {
842  /*
843  * Here, tt is the deletion target, and
844  * saved_tt is the head of the dupedkey chain.
845  */
846  if (tt == saved_tt) {
847  x = dupedkey;
848  x->rn_p = t;
849  if (t->rn_l == tt)
850  t->rn_l = x;
851  else
852  t->rn_r = x;
853  } else {
854  /* find node in front of tt on the chain */
855  for (x = p = saved_tt;
856  p != NULL && p->rn_dupedkey != tt;)
857  p = p->rn_dupedkey;
858  if (p != NULL) {
859  p->rn_dupedkey = tt->rn_dupedkey;
860  if (tt->rn_dupedkey != NULL)
861  tt->rn_dupedkey->rn_p = p;
862  } else
863  log(LOG_ERR, "rn_delete: couldn't find us\n");
864  }
865  t = tt + 1;
866  if (t->rn_flags & RNF_ACTIVE) {
867  *++x = *t;
868  p = t->rn_p;
869  if (p->rn_l == t)
870  p->rn_l = x;
871  else
872  p->rn_r = x;
873  x->rn_l->rn_p = x;
874  x->rn_r->rn_p = x;
875  }
876  goto out;
877  }
878  if (t->rn_l == tt)
879  x = t->rn_r;
880  else
881  x = t->rn_l;
882  p = t->rn_p;
883  if (p->rn_r == t)
884  p->rn_r = x;
885  else
886  p->rn_l = x;
887  x->rn_p = p;
888  /*
889  * Demote routes attached to us.
890  */
891  if (t->rn_mklist == NULL)
892  ;
893  else if (x->rn_b >= 0) {
894  for (mp = &x->rn_mklist; (m = *mp) != NULL; mp = &m->rm_mklist)
895  ;
896  *mp = t->rn_mklist;
897  } else {
898  /* If there are any key,mask pairs in a sibling
899  duped-key chain, some subset will appear sorted
900  in the same order attached to our mklist */
901  for (m = t->rn_mklist;
902  m != NULL && x != NULL;
903  x = x->rn_dupedkey) {
904  if (m == x->rn_mklist) {
905  struct radix_mask *mm = m->rm_mklist;
906  x->rn_mklist = NULL;
907  if (--(m->rm_refs) < 0)
908  rm_free(m);
909  m = mm;
910  }
911  }
912  if (m != NULL) {
913  log(LOG_ERR, "rn_delete: Orphaned Mask %p at %p\n",
914  m, x);
915  }
916  }
917  /*
918  * We may be holding an active internal node in the tree.
919  */
920  x = tt + 1;
921  if (t != x) {
922  *t = *x;
923  t->rn_l->rn_p = t;
924  t->rn_r->rn_p = t;
925  p = x->rn_p;
926  if (p->rn_l == x)
927  p->rn_l = t;
928  else
929  p->rn_r = t;
930  }
931 out:
932 #ifdef RN_DEBUG
933  if (rn_debug) {
934  log(LOG_DEBUG, "%s: Coming Out:\n", __func__),
935  traverse(head, tt);
936  }
937 #endif /* RN_DEBUG */
938  tt->rn_flags &= ~RNF_ACTIVE;
939  tt[1].rn_flags &= ~RNF_ACTIVE;
940  return tt;
941 }
942 
943 struct radix_node *
945  const void *v_arg,
946  const void *netmask_arg,
947  struct radix_node_head *head)
948 {
949  return rn_delete1(v_arg, netmask_arg, head, NULL);
950 }
951 
952 static struct radix_node *
953 rn_walknext(struct radix_node *rn, rn_printer_t printer, void *arg)
954 {
955  /* If at right child go back up, otherwise, go right */
956  while (rn->rn_p->rn_r == rn && (rn->rn_flags & RNF_ROOT) == 0) {
957  if (printer != NULL)
958  (*printer)(arg, SUBTREE_CLOSE);
959  rn = rn->rn_p;
960  }
961  if (printer)
962  rn_nodeprint(rn->rn_p, printer, arg, "");
963  /* Find the next *leaf* since next node might vanish, too */
964  for (rn = rn->rn_p->rn_r; rn->rn_b >= 0;) {
965  if (printer != NULL)
966  (*printer)(arg, SUBTREE_OPEN);
967  rn = rn->rn_l;
968  }
969  return rn;
970 }
971 
972 static struct radix_node *
973 rn_walkfirst(struct radix_node *rn, rn_printer_t printer, void *arg)
974 {
975  /* First time through node, go left */
976  while (rn->rn_b >= 0) {
977  if (printer != NULL)
978  (*printer)(arg, SUBTREE_OPEN);
979  rn = rn->rn_l;
980  }
981  return rn;
982 }
983 
984 int
986  struct radix_node_head *h,
987  int (*f)(struct radix_node *, void *),
988  void *w)
989 {
990  int error;
991  struct radix_node *base, *next, *rn;
992  /*
993  * This gets complicated because we may delete the node
994  * while applying the function f to it, so we need to calculate
995  * the successor node in advance.
996  */
997  rn = rn_walkfirst(h->rnh_treetop, NULL, NULL);
998  for (;;) {
999  base = rn;
1000  next = rn_walknext(rn, NULL, NULL);
1001  /* Process leaves */
1002  while ((rn = base) != NULL) {
1003  base = rn->rn_dupedkey;
1004  if (!(rn->rn_flags & RNF_ROOT) && (error = (*f)(rn, w)))
1005  return error;
1006  }
1007  rn = next;
1008  if (rn->rn_flags & RNF_ROOT)
1009  return 0;
1010  }
1011  /* NOTREACHED */
1012 }
1013 
1014 struct radix_node *
1016  int (*matcher)(struct radix_node *, void *), void *w)
1017 {
1018  bool matched;
1019  struct radix_node *base, *next, *rn;
1020  /*
1021  * This gets complicated because we may delete the node
1022  * while applying the function f to it, so we need to calculate
1023  * the successor node in advance.
1024  */
1025  rn = rn_walkfirst(h->rnh_treetop, NULL, NULL);
1026  for (;;) {
1027  base = rn;
1028  next = rn_walknext(rn, NULL, NULL);
1029  /* Process leaves */
1030  while ((rn = base) != NULL) {
1031  base = rn->rn_dupedkey;
1032  if (!(rn->rn_flags & RNF_ROOT)) {
1033  matched = (*matcher)(rn, w);
1034  if (matched)
1035  return rn;
1036  }
1037  }
1038  rn = next;
1039  if (rn->rn_flags & RNF_ROOT)
1040  return NULL;
1041  }
1042  /* NOTREACHED */
1043 }
1044 
1045 int
1046 rn_inithead(void **head, int off)
1047 {
1048  struct radix_node_head *rnh;
1049 
1050  if (*head != NULL)
1051  return 1;
1052  R_Malloc(rnh, struct radix_node_head *, sizeof (*rnh));
1053  if (rnh == NULL)
1054  return 0;
1055  *head = rnh;
1056  return rn_inithead0(rnh, off);
1057 }
1058 
1059 int
1061 {
1062  struct radix_node *t;
1063  struct radix_node *tt;
1064  struct radix_node *ttt;
1065 
1066  clib_memset(rnh, 0, sizeof(*rnh));
1067  t = rn_newpair(rn_zeros, off, rnh->rnh_nodes);
1068  ttt = rnh->rnh_nodes + 2;
1069  t->rn_r = ttt;
1070  t->rn_p = t;
1071  tt = t->rn_l;
1072  tt->rn_flags = t->rn_flags = RNF_ROOT | RNF_ACTIVE;
1073  tt->rn_b = -1 - off;
1074  *ttt = *tt;
1075  ttt->rn_key = rn_ones;
1076  rnh->rnh_addaddr = rn_addroute;
1077  rnh->rnh_deladdr = rn_delete;
1078  rnh->rnh_matchaddr = rn_match;
1079  rnh->rnh_lookup = rn_lookup;
1080  rnh->rnh_treetop = t;
1081  return 1;
1082 }
1083 
1084 static clib_error_t *
1086 {
1087  char *cp, *cplim;
1088 
1089  R_Malloc(rn_zeros, char *, 3 * max_keylen);
1090  if (rn_zeros == NULL)
1091  return (clib_error_return (0, "RN Zeros..."));
1092 
1093  clib_memset(rn_zeros, 0, 3 * max_keylen);
1094  rn_ones = cp = rn_zeros + max_keylen;
1095  addmask_key = cplim = rn_ones + max_keylen;
1096  while (cp < cplim)
1097  *cp++ = -1;
1098  if (rn_inithead((void *)&mask_rnhead, 0) == 0)
1099  return (clib_error_return (0, "RN Init 2"));
1100 
1101  return (NULL);
1102 }
1103 
rn_ones
static char * rn_ones
Definition: radix.c:48
radix_mask::rm_mklist
struct radix_mask * rm_mklist
Definition: radix.h:86
rn_search
struct radix_node * rn_search(const void *v_arg, struct radix_node *head)
Definition: radix.c:132
rn_delete
struct radix_node * rn_delete(const void *v_arg, const void *netmask_arg, struct radix_node_head *head)
Definition: radix.c:944
rn_insert
struct radix_node * rn_insert(const void *v_arg, struct radix_node_head *head, int *dupentry, struct radix_node nodes[2])
Definition: radix.c:417
R_Malloc
#define R_Malloc(p, t, n)
Definition: radix.c:88
radix_node::rn_b
i16 rn_b
Definition: radix.h:46
rn_match
struct radix_node * rn_match(const void *v_arg, struct radix_node_head *head)
Definition: radix.c:244
rn_zeros
static char * rn_zeros
Definition: radix.c:48
radix_node::rn_mklist
struct radix_mask * rn_mklist
Definition: radix.h:44
log
#define log(a, b, c...)
Definition: radix.c:94
RNF_ACTIVE
#define RNF_ACTIVE
Definition: radix.h:51
radix_node::rn_flags
u8 rn_flags
Definition: radix.h:48
f
vlib_frame_t * f
Definition: interface_output.c:1080
next
u16 * next
Definition: nat44_ei_out2in.c:718
Free
#define Free(p)
Definition: radix.c:93
clib_mem_free
static void clib_mem_free(void *p)
Definition: mem.h:311
rn_inithead
int rn_inithead(void **head, int off)
Definition: radix.c:1046
clib_error_return
#define clib_error_return(e, args...)
Definition: error.h:99
radix_mask
Definition: radix.h:82
rm_free
static void rm_free(struct radix_mask *rm)
Definition: radix.c:83
radix_node_head::rnh_nodes
struct radix_node rnh_nodes[3]
Definition: radix.h:117
radix_node_head::rnh_lookup
struct radix_node * rnh_lookup(const void *v, const void *mask, struct radix_node_head *head)
radix_node_head::rnh_addaddr
struct radix_node * rnh_addaddr(const void *v, const void *mask, struct radix_node_head *head, struct radix_node nodes[])
vm
vlib_main_t * vm
X-connect all packets from the HOST to the PHY.
Definition: nat44_ei.c:3047
h
h
Definition: flowhash_template.h:372
error
Definition: cJSON.c:88
rn_module_init
static clib_error_t * rn_module_init(vlib_main_t *vm)
Definition: radix.c:1085
radix_node_head::rnh_matchaddr
struct radix_node * rnh_matchaddr(const void *v, struct radix_node_head *head)
rn_printer_t
void(* rn_printer_t)(void *, const char *fmt,...)
Definition: radix.c:40
rn_dupedkey
#define rn_dupedkey
Definition: radix.h:71
SUBTREE_CLOSE
#define SUBTREE_CLOSE
Definition: radix.c:64
SUBTREE_OPEN
#define SUBTREE_OPEN
Definition: radix.c:63
rn_new_radix_mask
static struct radix_mask * rn_new_radix_mask(struct radix_node *, struct radix_mask *)
Definition: radix.c:578
rn_addmask
struct radix_node * rn_addmask(const void *n_arg, int search, int skip)
Definition: radix.c:485
rn_walktree
int rn_walktree(struct radix_node_head *h, int(*f)(struct radix_node *, void *), void *w)
Definition: radix.c:985
rm_alloc
static struct radix_mask * rm_alloc(void)
Definition: radix.c:73
if
if(node->flags &VLIB_NODE_FLAG_TRACE) vnet_interface_output_trace(vm
RNF_NORMAL
#define RNF_NORMAL
Definition: radix.h:49
radix_node::rn_bmask
u8 rn_bmask
Definition: radix.h:47
rn_inithead0
int rn_inithead0(struct radix_node_head *rnh, int off)
Definition: radix.c:1060
rn_walkfirst
static struct radix_node * rn_walkfirst(struct radix_node *, rn_printer_t, void *)
Definition: radix.c:973
fmt
int cJSON_bool fmt
Definition: cJSON.h:160
max_keylen
static int max_keylen
Definition: radix.c:42
normal_chars
static const char normal_chars[]
Definition: radix.c:46
MIN
#define MIN(x, y)
Definition: radix.c:70
radix_node_head
Definition: radix.h:97
rn_lexobetter
static int rn_lexobetter(const void *, const void *)
Definition: radix.c:560
rn_refines
int rn_refines(const void *m_arg, const void *n_arg)
Definition: radix.c:169
off
u32 off
Definition: interface_output.c:1078
rn_walknext
static struct radix_node * rn_walknext(struct radix_node *, rn_printer_t, void *)
Definition: radix.c:953
VLIB_INIT_FUNCTION
#define VLIB_INIT_FUNCTION(x)
Definition: init.h:172
radix_node
Definition: radix.h:43
rn_search_m
struct radix_node * rn_search_m(const void *v_arg, struct radix_node *head, const void *m_arg)
Definition: radix.c:149
for
for(i=1;i<=collision_buckets;i++)
Definition: flowhash_template.h:378
rn_lookup
struct radix_node * rn_lookup(const void *v_arg, const void *m_arg, struct radix_node_head *head)
Definition: radix.c:199
length
char const int length
Definition: cJSON.h:163
clib_memset
clib_memset(h->entries, 0, sizeof(h->entries[0]) *entries)
vlib_main_t
Definition: main.h:102
rn_masktop
#define rn_masktop
Definition: radix.c:50
b
vlib_buffer_t ** b
Definition: nat44_ei_out2in.c:717
u8
unsigned char u8
Definition: types.h:56
clib_error_t
Definition: clib_error.h:21
RNF_ROOT
#define RNF_ROOT
Definition: radix.h:50
vlib_init_function_t
clib_error_t *() vlib_init_function_t(struct vlib_main_t *vm)
Definition: init.h:51
addmask_key
static char * addmask_key
Definition: radix.c:45
rn_nodeprint
static void rn_nodeprint(struct radix_node *, rn_printer_t, void *, const char *)
Definition: radix.c:351
rn_addroute
struct radix_node * rn_addroute(const void *v_arg, const void *n_arg, struct radix_node_head *head, struct radix_node treenodes[2])
Definition: radix.c:602
rn_mkfreelist
struct radix_mask * rn_mkfreelist
Definition: radix.c:43
radix_mask::rm_refs
i32 rm_refs
Definition: radix.h:91
radix_mask::rm_flags
u8 rm_flags
Definition: radix.h:85
radix_mask::rm_b
i16 rm_b
Definition: radix.h:83
rn_newpair
struct radix_node * rn_newpair(const void *v, int b, struct radix_node nodes[2])
Definition: radix.c:402
rn_delete1
struct radix_node * rn_delete1(const void *v_arg, const void *netmask_arg, struct radix_node_head *head, struct radix_node *rn)
Definition: radix.c:760
radix_node::rn_p
struct radix_node * rn_p
Definition: radix.h:45
radix.h
radix_node_head::rnh_treetop
struct radix_node * rnh_treetop
Definition: radix.h:98
mask_rnhead
struct radix_node_head * mask_rnhead
Definition: radix.c:44
rn_search_matched
struct radix_node * rn_search_matched(struct radix_node_head *h, int(*matcher)(struct radix_node *, void *), void *w)
Definition: radix.c:1015
clib_mem_alloc
static void * clib_mem_alloc(uword size)
Definition: mem.h:253
rn_satisfies_leaf
static int rn_satisfies_leaf(const char *, struct radix_node *, int)
Definition: radix.c:221
radix_node_head::rnh_deladdr
struct radix_node * rnh_deladdr(const void *v, const void *mask, struct radix_node_head *head)